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THEORY AND COMPUTATION OF MULTILAYER
COMPOSITES

E. STEIN AND J. TESSMER
Institute for Structural Mechanics and
Computational Mechanics, University of Hannover,
Appelstrafle 9A, D-30167 Hannover, Germany

Abstract. An hierarchical concept for the analysis of thin-walled com-
posite shells is presented within the finite element method for nonlinear
deformation of thin-walled composite structures. For non-disturbed subdo-
mains of the structure an effective 4-node shell element with 5 or 6 d.o.f.
per node is used for the whole laminate. For the analysis of 3D-stress states
a multidirector shell element along the thickness with piecewise polynomi-
als is presented. n physical layers are approximated by N numerical layers,
discretized with hierarchical trial- and test functions. The coupling of both
elements is performed by special transition elements. An example shows
the technique and efficiency of coupling both types of elements.

1. Introduction

Composites are typically used for light-weight structures, and in many
engineering fields there are attempts to replace components with clas-
sical materials (steel, concrete) by fiber reinforced materials. Therefore
we focus on the computation of thin-walled laminated composites. Due
to anisotropy and inhomogenity these structures show rather complicated
states of stresses and strains such that several adequate mechanical models
for thin composite structures have been developed in recent years, see [5, 9].

Different FE-methods were applied with respect to special purposes
(global deformation analysis, stress analysis, first ply failure criteria, local
stress singularities, crack analysis), see e.g. [2, 8]. By admitting a priori
delaminations between plies and regarding their growth, load depending
disturbances of the perfect geometry of cross-sections are growing and di-
minish the critical load within stability analysis. We present an hierarchical
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multi-layer shell model as a framework for the efficient nonlinear analysis
of delamination and failure process, focusing on basic topics of composite
theory and computation. In [10] the failure analysis for this model is shown.
For calculating a complete 3D stress state in disturbed subdomains a mul-
tidirector shell kinematic with deformation modes in thickness direction is
used and implemented in FEM. Within this kinematics, the interpolation
in thickness direction with hierarchical polynomials per layer is indepen-
dent from in plane interpolation. Since dominant parts of composite shells
usually reside in 2D stress states with little transvere shear deformation, a
conventional Reissner-Mindlin kinematic is used for regular parts. In these
areas normal stresses S33 are much smaller than normal in-plane stresses.
Therefore, S 3 3 is neglected in the classical laminate theory. For coupling
both kinematic types within a finite element method a transition element
is applied.

2. Kinematics

The considered thin-walled composite structures consist of a layerwise build
up with n physical layers j of thickness hi and N numerical layers i which
can collect or subdivide the physical layers for numerical calculations, fig.
1 and 2

The position vector X0 of the reference surface So is parametrizised by
convected coordinates 01. An orthonormal basis system tk (001) is attached
to this surface where t 3 is a normal vector and e 3 the coordinate in thick-
ness direction. The transformation between the different base systems is
given by tk(G') = R 0(O1) ek where R.0 is a proper orthogonal tensor.

Depending on the desired accuracy and numerical effort two different
types of kinematics are applied. One is the standard shell kinematic with
one director, yielding a 2D-FE-formulation with 5 or 6 d.o.f. per node,
and the other is a 3D-multi-director kinematic which still yields a 2D-like
finite element data structure by a priori C°-continuous hierarchical shape
functions in thickness direction, such we get the numerical complexity of a
3D-brick formulation.

2.1. INEXTENSIBLE ONE-DIRECTOR KINEMATICS

The position vectors of the reference and the current configuration of the
shell body are given by

x(e ,e = x0 (e6) + e3 t 3 (eG), -h, < E3 < h_,
x(e, e 3 ) = xo(e') + 03 d(E),
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Figure 2. Multi-Director-Kinematic for N numerical layers

A multiplicative decomposition of u. is introduced as
k

u(e°, e 3) = E ii(oe) wi(e3) = g(e3) j(ec),
1=1

i-(O ) = [,il, 12, ... , i , ... ,i 1 4 , s+f 2,1 ... . , N(m-l)+,IT (6)

ji (layer 1) Ui (layer i)

where k is the number of interpolation points over the thickness, wl are
shape function (piecewise linear for k = N + 1), s = (i - 1) (m - 1) is a
layer index, and m is the polynomial degree, (2 < m < 4). In thickness
direction hierarchical shape functions are defined for each numerical layer
ias li•(03) .

ui(pa, o3) j= •(E3) ii(0a), ~ •(0a) =[fl, fl, ... , ir=u u] 1•• [1,2, ... €IT I
a u [i' Uly UT'

0i(i) 0 0.5(1 -3i) €•(Ci) = 1 0 •i2 - 20 3 /h (

¢i(i) = 0.5( + (i), €i(Ci = (i (Ki2)Ci (7)

This leads to an a priori discretization in thickness direction within the
analytical shell theory, analogous to the analytical thickness integration of
stress resultants in classical shell models. These shape functions are inde-
pendent from the in-plane trial-functions, see sec. 5.2. For linear plates see
[8, 9]. A layerwise linear interpolation is realized by using €i and €i only.

In contrast to eq.(4) the Green-Lagrangian strain tensor is computed
and applied in its complete form , eq.(3).
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3. Material Equations on Macro Level

3D-material equations are formulated for each physical layer of the com-
posite laminate . These have to be transformed from the fiberoriented basis
to the local basis of the shell, see [5]. In case of standard shell kinematics
they are integrated a priori over the thickness of the overall thickness.

3.1. UNI-DIRECTIONAL TRANSVERSAL ISOTROPIC LAYERS

The constitutive equations for unidirectional (UD) layers of laminated struc-
tures are derived under the assumption of small strains and the validity of
St. Venant Kirchhoff material equations with linearized strains.

Hence, the free energy W(E) = E . CE is formulated as a quadratic
function of E. The material tensor C is constant with respect to the in-
variants trE, tr(E2), ao . Eao, ao . E 2ao. Using the elastic parameters
A,i IT,/iL, a, /3, the free energy W, the stresses S and the constant material
tensor C follow as

W(E) = ½A(trE)2 + /kTtr(E2) + a(ao Eao)trE
+2(AL -- AT)(ao 0 E2ao) + '0 (ao Eao) 2 , (8)

with S=2!E -C E,C= 82W(E)

For UD-layers with the fiber direction ao = el = (1, 0, 0) and by compu-
tation of CC-' = 1 the components of the compliance matrix C` result
with the common elasticity constants in

I/E, -V12 /E, -v1 2/EI 0 0 0
-V1 2/E, l/E 2  -v 23/E 2  0 0 0

C_1 -V 12 /EI -v 23/E 2  1/E 2  0 0 0
0 0 0 1/G 12  0 0 (9)
0 0 0 0 1/G12 0
0 0 0 0 0 1/G 2 3

3.2. HYPERELASTIC ISOTROPIC INTERMEDIATE LAYERS

For composite structures with macroscopicly seperated parts of anisotropic
and isotropic material, e.g. tires, also a hyperelastic isotropic material equa-
tion is formulated with respect to the invariants of the Cauchy-Green tensor
C = FTF = 2E + 1. The stored energy by 'Blatz & Ko', [7], yields

W = 1/p0[f(Ji - 3) + (1- f)(J2 - 3)+2 2o v (10)
- v){f(j- 2 ,O 1) + (1 - f)(J1-2,.o _ 1 0)
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with Ji = 11 , J 2 =1 2 /1 3 , J 3 =v/'3-= J;

=1 = trC, 12 = 0.5[(trC) 2 - trC2], 13 = detC.
The 2. Piola-stress tensor S and the material tensor C follow as

aW a
S = OE = 2- W(1 1(C),I 2(C),I 3 (C)), (11)

C = 4-W (1(C),12(C),1 3(C)).

= S = Ao[f + A -(I -/)C + 1O'C-1
C2 = 2 -(1 - f)1 (9 1 - 1l) + 21°LOO0ýC-10

J2 2vo ,80 _Z (2
+ o .02 + 2/3± 2 12 - f)]C-i C- (12)

1 I- 2v0  J

+2o-(i-f)(C-'®C+C(c-0 )

J2-21, IO(1 - f)(C-1 ® 1 + I (& C-1),

with /31 = _fjl-2vo + (1 _ f)j1-2vo _J 2 (1 f)
-2v= 2vo

032 = P J-2vo f (1 - J1-2o

0C-18C

3.3. RESULTANT FORMULATION FOR ONE-DIRECTOR SHELL

Since the material equations for one-director shells are formulated in resul-
tants of stresses and strains, an adequate transformation and integration
of the material law, eq.(9), is conducted. With the assumption of S33 = 0
the matrix C6x6 can be statically kondensed to Cx 5 Such, we get for the
fiberorientated basis

SR= CRER with CF=[ OF]I~ o S

C911 = El/(1 - v . ) , CF13 = 0, cF1 G12,

2 cm 2 =, c> =C , (13)

cý 2 2 =E 2/(1 - v 2  , Cm33 = G12, Cjf 22 2
S= [Sn; s 22 ; s12; s13; s23] , ER = [En; E 22 ; 2E 12; 2E13; 2E 2 3]

For the integration over the thickness all matrices for each layer j must be
transformed to the local basis of the reference surface, see [4].

C"== V C] (14)

44



N DmD-, 0
= DTb Db 0 , (15)

0 0 D,

with S = [N";;N 2 2;N12;M1 I ; M 2 2 ; M1 2; Q1; Q2]T,
S= [e11; e2 2 ; 2,12; -11;r 22 ; 2K12; ,1; 2]T

Dm = hi, Drb = C3 (

D6  = h+ h)J D, = •C7h3

4. Variational Equations

In this section the weak form of equilibrium (principle of virtual work) is
given. Linearization yields the consistent tangential operator.

4.1. ONE-DIRECTOR FORMULATION

The principle of virtual work is given in the material description for the
inextensible shell in thickness direction and external loads t at the reference
surface, using (15)

G(u,i) = f S'3EdV- f i.tidr,=o
(v) (r.)

= f (NaOJ6e + Mc6OKa, + Q'J7yL)dQ - G.t(t, 17) (16)
(12)

= f S.3EdQ - Gezt(t, 77).
(12)

For constant material matrix C and conservative loads the linearization
(Giteaux-derivative) of (16) yields

DG(u, 17). Au = f J. -Et. AfE dQ + f SAS dQ. (17)
(a) (R)

4.2. MULTIDIRECTOR FORMULATION
44

The laminate structure is loaded at the bottom- and top-surface , with
15 = 1k ek . Hence, the virtual work reads in index notation

G(u, -q) = f [ f Skt JEkt JdE3] dE 2dEl - f P-kk d_ -0, (18)
(n) (e3) (n") (8

with J(Oi) = (X,, XX, 2 )"X, 3. Note the special splitting of the volume inte-
gral in two parts. Through this split it is possible to apply the same interpo-
lation functions with respect to the reference surface for the multi-director
formulation and for the one-director kinematics. Linearization yields

DG(u, 17) . Au = f [ f (SEklCklmnAEmn + sklAbEkl) Jde3] dQ. (19)
(2) (e3)
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5. Finite Element Discretization

The four node quadrilateral Ql-element with isoparametric bilinear shape
functions is used in the reference surface for all kinematic quantities. For
one-director kinematic shell elements with 5 or 6 d.o.f. per node and for
multi-director kinematics shell elements with more than 6 d.o.f. per node
are applied. For coupling both types of finite elements a special transition
element is used.

5.1. ONE-DIRECTOR ELEMENT

The approximation of geometry and displacements reads
4 4

Xoh = L NK(ý, 7) XoK, and Vh = L NK'(ý,rq)VK, (20)
K=1 K=I

where VK = [U0; Ai31T is the nodal displacement vector; it consists of the
displacement components of the reference surface and the increment of the
rotational vector. Depending on the place of the node (within flat areas
or at intersections) the rotational vector is parametrisized with respect to
the local basis (5 d.o.f.) or the global basis (6 d.o.f.). Following eqs.(1)-(3),
all necessary kinematic values are computed. With the differential operator
matrix B, see [5], we get

4

[be, b], Zy E BK6 VK. (21)
K=I

Applying the virtual work principle (16) and linearization (17) yields
4

G(v, Sv) = E 6vTK GK, with GK = f (BT - gKi)dQ ,
K = I 4 4 TK

DG(v,bv)Av= E E 6 KKKLAVL, (22)
K=I L=1

with KKL = f (BT tBL + GKL)dt.

5.2. MULTIDIRECTOR ELEMENT

One major advantage of the multi director formulation in contrast to a
standard 3D-finite element is the 2D-data structure with bilinear shape
functions with respect to the reference surface, which allows for an easy
coupling with standard shell elements. The approximation of the geometry
and the displacement field of layer i, eqs. (7)-(5), follows from

4
Xh = E NK(•7,))XK, XKh=XOK+ )3 t3K,

K=1 (23)
4

uh = 7 NK(, 7?) UK.
K=I
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The number of components for UK is 3(N + 1) + 3N(m - 2). Again, with
4

the differential operator B-matrix, see [4], 6E = L BK 5UKg. Putting into
K=1

(18) and (19) yields
4

G(u, i) = U ZU GK,
K=1

with GK = f [- B- S d(]dQ - J NKpjdQea,
(a,!) j= I (En) (3) (24)

nel nel

DG(u, ir)Au - S 3uT KKL AUL,
K=1 L=i

with KKL f 1iLj (BT Cj BL + GKL) J--d(3 df2e.
(Q.) =1(93)

5.3. TRANSITION ELEMENT

For coupling standard one-director with multi-dirctor shells a transition
element is used. To prevent sensible disturbances of the 3D-stress state
each layer i has to be allowed for a constant thickness strains E33 at the
multi-director side of the transition element and C°-continuity only in the
mid-surface at the other one-director side, see [6]. Such a thickness jump
of the deformed laminate is admitted there.

5.4. SHEAR-LOCKING

All presented elements use a special interpolation of transverse shear strains
to prevent "shear-locking", namely an assumed natural strain (ANS) method,
see [3],

7 ( + (1"17D (25)

In this formulation shear strains in the mid-side nodes (M = A, B, C, D)
are computed by the standard bilinear shape functions NK(ý,17) of the
element.

6. Example

Steel-Cord-Reinforced Rubber Beam under vertical load.
Cross-sec.: width/height = 100/20; Layersequenz [iso/20°/iso/ - 20°/iso].

47



so 30 Element Equat. CPU

A F 1. One-Dir.-Shell 720 1.3

2. Multi-Dir.-ShelI, N=15 6912 135.5
ttsmpecsen III-) mm _______________________

3. Coupling 1. and 2. 2925 39.8

Figure 39. Composite-Beam in A and B
20 Ohie-- Dkrect6r--E'ements

oc .oupled- .Ele.mems ....

-10

-800. ..... ......... . -.... -. . . ...

-120 .. .. ......

-50 0 50 100 150 200 250 300 350 400 450
X [mm]

Figure 4. Displacement curves
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